Армянские физики определили работу электромагнитного поля в присутствии нестационарных зарядов

17 декабря 2018 года

Армянские физики вывели калибровочно-инвариантный гамильтониан (энергию) электромагнитного поля, который позволяет корректно определить работу поля в присутствии нестационарных зарядов. С помощью этого гамильтониана ученые сформулировали статистическую механику электромагнитного поля, доказали для него второй закон термодинамики и связали «электродинамическую стрелу времени» с термодинамической, пишет N+1 со ссылкой на arXiv.org.

Статья опубликована в Physical Review Letters.

Чтобы сформулировать термодинамику и статистическую механику, необходимо знать гамильтониан (энергию) системы. Эта функция задает распределение вероятностей состояний, по которому усредняются микроскопические параметры системы, и позволяет рассчитать основные термодинамические величины — энергию, работу и теплоту. Первый, второй и третий законы термодинамики целиком посвящены превращениям энергии. В нестационарном случае, в котором классическая термодинамика перестает работать, гамильтонова формулировка становится еще более важной, поскольку она позволяет строго описать эволюцию системы. Как правило, гамильтониан определяют с помощью преобразования Лежандра от лагранжиана системы.

К сожалению, в случае электродинамики применить этот подход нельзя, поскольку стандартный гамильтониан электромагнитного поля в присутствии нестационарных зарядов не инвариантен относительно калибровочных преобразований. Следовательно, с его помощью нельзя корректно определить работу. Грубо говоря, при калибровочном преобразовании электрическое и магнитное поле системы «подкручиваются» таким образом, чтобы все наблюдаемые величины остались постоянными. Калибровочная инвариантность уравнений электродинамики уменьшает число поляризаций фотона и «отбирает» у него массу; подробнее про эту фундаментальную симметрию можно прочитать в статье «Большие калибры физики». К сожалению, в рамках классической электродинамики сделать гамильтониан калибровочно-инвариантным нельзя: чтобы состояние системы осталось прежним, нужно «подкручивать» не только электромагнитное поле, но и фазу волновой функции — либо требовать, чтобы плотность электрического заряда оставалось постоянной в любой точке пространства. Следовательно, построить неравновесную термодинамику электромагнитного поля тоже нельзя. По крайней мере, так ученые считали до последнего времени.

Тем не менее, физики Армен Алавердян и Давид Караханян исправили этот недостаток и построили калибровочно-инвариантный гамильтониан электромагнитного поля, который можно использовать в неравновесной термодинамике. Для этого они нестандартным образом избавились от нефизических степеней свободы поля, которые запрещены условием калибровочной инвариантности. Сначала исследователи вывели уравнения на скалярный и векторный потенциал, варьируя стандартное действие электродинамики. Затем они решили одно из этих уравнений, выразили скалярный потенциал через плотность зарядов и векторный потенциал, а затем подставили полученное выражение в исходный лагранжиан. В результате физики получили функцию, которая зависит только от плотности зарядов и напряженности магнитного поля. С помощью этой функции ученые определили гамильтониан, который разбивается на электростатическую энергию, «свободную магнитную» часть и часть, описывающую взаимодействие.

Затем исследователи проверили, что полученный гамильтониан инвариантен относительно калибровочных преобразований даже в том случае, если плотность зарядов меняется во времени. Для этого они использовали тот факт, что найденная функция энергии зависит от плотности зарядов и ротора плотности тока — независимых параметров, которые не связаны между собой дополнительными уравнениями. Кроме того, ученые связали гамильтониан с энергией Пойнтинга (энергией свободного электромагнитного поля). В результате физикам удалось доказать, что гамильтониан сохраняется в том случае, если производная электрического тока равна нулю, а плотность зарядов ограничена некоторой постоянной величиной. Интересно, что в этом подходе работа электромагнитного поля не обязательно связана с излучением электромагнитных волн: например, если заряды будут двигаться ускоренно, но прямолинейно, они будут излучать, хотя работа поля будет равна нулю.

Используя построенный гамильтониан, физики сформулировали статистическую механику электромагнитного поля. В частности, ученые проверили для него второй закон термодинамики — показали, что в циклических процессах энергия поля не убывает. Правда, исследователи ограничились частным случаем, в котором исходное распределение вероятностей совпадает с распределением Гиббса при нулевой температуре. По словам авторов, этот закон позволяет связать «электродинамическую стрелу времени» с термодинамической и космологической «стрелой».

Кроме того, ученые проверили, можно ли в рамках их подхода «почувствовать» массу фотона, которая нарушает калибровочную инвариантность теории. Для этого они повторили все выкладки, предполагая массу отличной от нуля, и заново вывели гамильтониан. Оказалось, что в этом случае определение работы поля совершенно другое — следовательно, если ее удастся независимо измерить, можно будет проверить, равна ли масса фотона нулю.

Источники

править
 
 
Creative Commons
Эта статья содержит материалы из статьи «Армянские физики определили работу электромагнитного поля в присутствии нестационарных зарядов», опубликованной PanARMENIAN.Net и распространяющейся на условиях лицензии Creative Commons Attribution 3.0 Unported (CC-BY 3.0 Unported).
 
Эта статья загружена автоматически ботом NewsBots в архив и ещё не проверялась редакторами Викиновостей.
Любой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.

Комментарии

Викиновости и Wikimedia Foundation не несут ответственности за любые материалы и точки зрения, находящиеся на странице и в разделе комментариев.