Выпуск системы машинного обучения TensorFlow 1.0 и классификатора изображений ResNeXt
16 февраля 2017 года
Компания Google представила первый стабильный выпуск платформы машинного обучения TensorFlow, предоставляющей готовые реализации различных алгоритмов глубокого машинного обучения. Предоставляется простой программный интерфейс для построения моделей на языке Python и низкоуровневый интерфейс для языка С++, позволяющий управлять построением и выполнением вычислительных графов. Код системы написан на языках С++ и Python и распространяется под лицензией Apache.
Платформа развивается командой Google Brain и используются в сервисах Google для распознавания речи, выделения лиц на фотографиях, определение схожести изображений, отсеивание спама в Gmail и организации перевода с учётом смысла. С момента открытия кода платформа также была задействована в нескольких независимых исследовательских проектах, например, на основе TensorFlow созданы мобильные приложения для определение рака кожи и профилактики слепоты у больных сахарным диабетом.
TensorFlow предоставляет библиотеку готовых алгоритмов численных вычислений, реализованных через графы потоков данных (data flow graphs). Узлы в таких графах реализуют математические операции или точки входа/вывода, в то время как рёбра графа представляют многомерные массивы данных (тензоры), которые перетекают между узлами. Узлы могут быть закреплены за вычислительными устройствами и выполняться асинхронно, параллельно обрабатывая разом все подходящие к ним тезоры, что позволяет организовать одновременную работу узлов в нейронной сети по аналогии с одновременной активацией нейронов в мозге. Распределённые системы машинного обучения можно создавать на типовом оборудовании, благодаря встроенной поддержке в TensorFlow разнесения вычислений на несколько CPU или GPU.
Версия TensorFlow 1.0 примечательна стабилизацией API для языка Python, который в дальнейшем будет меняться только с сохранением обратной совместимости, а также добавлением экспериментальных API для языков
Источники
править
Любой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.