Исследователи научили нейросеть оценивать уровень бедности по спутниковым снимкам
19 августа 2016 года
Группа ученых из Стэнфордского университета предложила способ определять уровень бедности стран и регионов при помощи спутниковых снимков и нейросетей, сообщает Engadget. Статья, описывающая эту методику, была опубликована в журнале Science.
По словам ученых, разработанная ими технология может быть применена для эффективной оценки уровня бедности в условиях отсутствия достоверных статистических данных, а использование этой методики позволит сэкономить значительные средства на проведении дорогостоящих опросов и других исследований.
Как пишет N+1, исследователи разбили процесс обучения нейросети на несколько этапов. На первом этапе они при помощи крупной базы изображений подготовили систему, научив ее определять, что изображено на снимке, и находить мелкие детали вроде крыш домов. Затем в нейросеть были загружены ночные и дневные спутниковые снимки местности. Алгоритм научился сопоставлять эти снимки, чтобы находить на них экономически богатые районы, учитывая уровень освещенности. Сочетание этих двух этапов обучения позволило нейросети самостоятельно определить, какие еще особенности отличают благополучные области на карте. Например, к таким факторам были отнесены наличие дорог или воды.
После этого разработчики загрузили в систему данные опросов о средних потребительских расходах домохозяйств и "индексе богатства", который рассчитывается на основе сведений об имуществе во владении домохозяйств. Результаты опросов, привязанные к картам местности, нейросеть сопоставляла со спутниковыми снимками той же местности и теми ее особенностями, которые указывают на экономическую активность населения. В результате нейросеть обучилась восполнять пробелы в данных на основе деталей определенной местности.
Точность работы обученного алгоритма была проверена при помощи спутниковых снимков пяти африканских стран (Нигерии, Танзании, Уганды, Малави и Руанды), по которым были доступны результаты опросов, и превзошла точность предложенных ранее методов, включая оценку бедности по данным сотовых операторов о звонках и SMS-сообщениях.
По мнению исследователей, практическим результатом применения предложенного метода оценки благосостояния жителей беднейших стран может стать более точное распределение помощи со стороны как правительств этих стран, так и международных организаций. Также благодаря обновлению спутниковых снимков технологию можно будет применять для оценки эффективности мер по борьбе с бедностью.
Источники
правитьЛюбой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.