Лаборатория в Беркли разрабатывает фоторезист для увеличенного разрешения компьютерных схем
18 июля 2014 года
<dynamicpagelist> category = Опубликовано category = Химия notcategory = Викиновости коротко count = 3 orcer = addcategory suppresserrors = true namespace = Main addfirstcategorydate = true </dynamicpagelist>
<dynamicpagelist> category = Опубликовано category = Наука и технологии count = 5 orcer = addcategory suppresserrors = true namespace = Main </dynamicpagelist>
Американские учёные из лаборатории в Беркли, с помощью производителя процессоров Intel, разработали новую разновидность фоторезиста[1], являющегося смесью двух фоторезистов — с химическим усилением и без химического усиления — и превосходящего в своём качестве их оба. При использовании нового фоторезиста разрешение фотошаблона составляет 20 нм, в отличие от 24 нм и 28 нм для исходных составляющих. Журнал «Нанотехнологии» (англ. Nanotechnology) опубликовал статью об изобретении 15 июля 2014 года.
В процессе фотолитографии фоторезист растворяется в кислоте за счёт преимущественно энтальпийных (фоторезист с химическим усилением) или энтропийных (без химического усиления) механизмов. Учёные исследовали свойства смеси при разных процентных соотношениях. Оказалось, что за счёт объединения таких преимуществ, как механическая стабильность резины с оксетаном (для сшивки, образования поперечных межцепных связей) и высокая светочувствительность резины с эфиром (метил-адамантан метакрилат), достигается улучшение качества. Шероховатость края линии рисунка уменьшается с 6 нм и 5.5 нм для исходных составляющих до 4 нм для разработанной смеси.
Как сообщил Поль Эшби, научный сотрудник «Молекулярной литейной» при лаборатории в Беркли, учёные хотят понять механизмы, позволившие добиться повышенного разрешения и низкой шероховатости линий, с целью разработки ещё более качественных резистов на основании полученных результатов. Так как используемое в лаборатории ультрафиолетовое излучение с низкой (от 124 нм до 10 нм) длиной волны достигнет массового использования в промышленности только к 2017 году (согласно заявлениям Intel, TSMC, GlobalFoundries на 2013 EUVL Workshop), у учёных есть несколько лет для достижения даже меньшего размера транзисторов.
Учёные полагают, что созданная ими технология сыграет важную роль при переходе полупроводниковой индустрии к 10-нанометровой технологии, что позволит упростить размещения на подложке большего числа элементов и создавать, например, более мощные процессоры с меньшим энергопотреблением.
Примечания
править- ↑ Фоторезист — вещество, используемое в частности при создании микросхем для нанесения шаблона электрических цепей и компонентов на подложку с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.
Источники
править- «На помощь закону Мура приходит фундаментальная химия». Компьютерное обозрение, 17 июля 2014 года. (архив)
- R. Colin Johnson «Intel Readies Super-Resist for EUV». ', 17 июля 2014 года. (архив)
- Kate Greene «Fundamental Chemistry Findings Could Help Extend Moore’s Law». Национальная лаборатория имени Лоуренса в Беркли, 15 июля 2014 года. (архив)
- Prashant K Kulshreshtha, Ken Maruyama, Sara Kiani, James Blackwell, Deirdre L Olynick and Paul D Ashby «Harnessing entropic and enthalpic contributions to create a negative tone chemically amplified molecular resist for high-resolution lithography». ', 15 июля 2014 года. (архив)