Нейросеть DeepMind с разгромным счетом обыграла профессиональных игроков в StarCraft II
25 января 2019 года
Программа AlphaStar, разработанная компанией DeepMind (входит в состав владеющего Google холдинга Alphabet), смогла всухую обыграть двух профессиональных игроков в стратегию в реальном времени StarCraft II в сериях из пяти матчей. Полная видеозапись турнира, прошедшего в Лондоне при участии создавшей игру компании Blizzard, была опубликована на YouTube.
Как пишет N+1, для обеих частей StarCraft уже давно разрабатываются боты, но до сих пор таким алгоритмам не удавалось победить человека. Основная сложность обучения программ для этих игр заключается в том, что они представляют собой стратегии в реальном времени, в которых часть информации закрыта, а игрокам нужно решать большое количество задач одновременно.
Ранее в DeepMind уже пытались создать алгоритм для игры в StarCraft II, но те попытки не увенчались успехом. Теперь же разработчики представили программу AlphaStar, которая может профессиональных игроков в StarCraft II. В процессе создания AlphaStar в DeepMind использовали метод глубокого обучения с подкреплением, а также обучение с учителем. В качестве тренировочного датасета разработчики использовали предоставленные компанией Blizzard анонимизированные записи игр настоящих людей. Когда обученная на этих играх нейросеть научилась побеждать встроенные алгоритмы StarCraft II на самой высокой сложности в 95% случаев, создатели заставили программу играть с самой собой в течение двух недель.
На организованном в Лондоне турнире AlphaStar сперва выиграла пять матчей из пяти против геймера под ником TLO (Дарио Вунш, Германия), а затем другая версия нейросети пять раз подряд победила игрока MaNa (Гжегож Коминч, Польша). Оба геймера входят в сотню сильнейших игроков в StarCraft II. При этом среднее значение APM (количество действий в минуту) нейросети оказалось значительно меньше, чем у ее противников.
Стоит отметить, что у программы изначально было небольшое преимущество перед соперниками. Хотя так называемый туман войны закрывал для нейросети карту так же, как и для геймеров, AlphaStar получала для обработки не частичное изображение известной области, а видела сразу все, что позволяла увидеть игра. За счет этого нейросети не приходилось постоянно переключаться между разными зонами карты для контроля за происходящим. О значимости этого преимущества говорит тот факт, что AlphaStar проиграла демонстрационный матча с MaNa, в котором разработчики заставили программу играть с обычным ограничением масштаба видимой области.
Напомним, в июле прошлого года в DeepMind смогли обучить программу под названием For The Win играть в Quake III Arena не хуже настоящих геймеров.
Источники
правитьЛюбой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.