Новый материал может восстанавливать свою форму после деформации до 10 миллионов раз
30 мая 2015 года
Материалы, способные восстанавливать свою форму после деформации имеют широкое применение. Ранние прототипы предлагаются на роль «искусственных мышц» для ряда роботов, а также для создания эффективных и компактных систем охлаждения, поскольку их теплоемкость намного выше, чем у обычных жидких теплоносителей.
Тем не менее, такие приложения были затруднены тем фактом, что все существовавшие до этого материалы с памятью формы теряли способность восстанавливать ее всего через несколько тысяч циклов. Однако международная группа исследователей из Мэрилендского университета создала сплав, который может восстанавливать свою форму после деформации до 10 миллионов раз. Таким образом, новый материал на три порядка превзошел предшественников по этому параметру, что делает реальным его применение не только в искусственных мышцах или системах охлаждения, но и для создания искусственного клапана аорты.
Экспериментируя с различными вариантами ранее известного сплава с памятью формы на основе никеля, меди и титана, авторы добавили в него небольшое количество кобальта. Затем исследователи тестировали его способность восстанавливаться после деформации с помощью двух устройств. Одно из них очень быстро сгибало пленку из сплава, а затем освобождало ее от захвата, давая восстановить первоначальную форму при нагреве. Второе устройства попеременно нагревало и охлаждало пленку, позволяя ей восстанавливать исходную форму.
По их собственным словам, ученые неожиданно столкнулись с тем, что эксперимент сильно затянулся – несмотря на крайне быструю и бесперебойную работу оборудования, ждать окончания испытаний пришлось много недель. Закончены они были после того, как сплав смог восстановить исходную форму после десятимиллионной по счету деформации.
В настоящее время ученым не вполне ясно, как именно новооткрытый сплав может иметь такую устойчивую «память». Предположительно, он переходит от одной формы кристаллической решетки к другой и обратно без негативного эффекта, связанного с формированием молекулярных «узлов», дефектных областей кристаллической решетки, обычно образуемых инородными включениями даже в самых чистых сплавах. Кроме того, в составе пленки такого сплава (TiNiCu) авторы обнаружили небольшие включения Ti2Cu, которые, по их мнению, могут играть существенную стабилизирующую роль в кристаллической решетке материала.
Источники
правитьЛюбой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.