Открыт код SQL-движка BlazingSQL, использующего GPU для ускорения
5 августа 2019 года
Объявлено (Архивная копия от 6 августа 2019 на Wayback Machine) об открытии исходных текстов SQL-движка BlazingSQL (Архивная копия от 12 октября 2020 на Wayback Machine), использующего GPU для ускорения обработки данных. BlazingSQL не является полноценной СУБД, а позиционируется как движок для анализа и обработки больших наборов данных, сравнимый по своим задачам с Apache Spark. Код написан на языке Python и открыт под лицензией Apache 2.0.
BlazingSQL подходит для выполнения единичных аналитических запросов над большими наборами данных (десятки гигабайт), хранимых в табличных форматах (например, логи, статистика NetFlow и т.п.). BlazingSQL может выполнять запросы из raw-файлов в форматах CSV и Apache Parquet, размещённых в сетевых и облачных ФС, подобных HDSF и AWS S3, напрямую передавая результат в память GPU. Благодаря распараллеливанию операций в GPU и использованию более быстрой видеопамяти выполнение запросов в BlazingSQL осуществляется до 20 раз(недоступная ссылка) быстрее, чем в Apache Spark.
Для работы с GPU применяется развиваемый при участии компании NVIDIA набор открытых библиотек RAPIDS, позволяющий создавать приложения для обработки данных и аналитики, выполняемые целиком на стороне GPU (предоставляется Python-интерфейс для использования низкоуровневых примитивов CUDA и распараллеливания вычислений).
BlazingSQL предоставляет возможность использования SQL вместо API обработки данных cuUDF (на базе Apache Arrow), применяемого в RAPIDS. BlazingSQL является дополнительной прослойкой, работающей поверх cuDF и использующей для чтения данных с диска библиотеку cuIO. SQL-запросы транслируются в вызовы функций cuUDF, позволяющие загружать данные в GPU и выполнять над ними операции слияния, агрегирования и фильтрации. Поддерживается создание распределённых конфигураций, охватывающих тысячи GPU.
BlazingSQL существенно упрощает работу с данными - вместо сотни вызовов функций cuDF можно обойтись одним SQL-запросом. Применение SQL даёт возможность обеспечить интеграцию RAPIDS с существующими системами аналитики, без написания специфичных обработчиков и не прибегая к промежуточной загрузке данных в дополнительную СУБД, но сохраняя при этом полную совместимость со всеми частями RAPIDS, транслируя в SQL имеющуюся функциональность и обеспечивая производительность на уровне cuDF. В том числе обеспечена поддержка интеграции с библиотеками XGBoost и cuML для решения задач аналитики и машинного обучения.
Источники
править- Главная ссылка к новости (https://blog.blazingdb.com/bla...) (Архивная копия от 6 августа 2019 на Wayback Machine)
Любой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.