Техника атаки на системы, использующие алгоритмы машинного обучения
27 августа 2017 года
Группа исследователей из Нью-Йоркского университета опубликовала результаты оценки возможности проведения атак на системы, основанные на методах глубинного машинного обучения. Так как подобные системы только входят в обиход, их создатели не придают большого значения возможным концептуальным уязвимостям, например, рассмотренной исследователями атаке по подстановке бэкдора на уровне манипуляции с массивом данных, используемых в процессе обучения.
Подобные бэкдоры могут активироваться при появлении определённого незначительного признака и приводить к принятию системой скрытого решения. Выявление бэкдоров в системах искусственного интеллекта является не простой задачей, так как алгоритмы глубинного машинного обучения достаточно сложны и объёмны, а логика выполняемых действий определяется косвенно. Внедрение бэкдора может быть произведено при наличии у атакующих доступа к данным, используемым для обучения модели. При этом проводимые впоследствии перетренировки модели не удаляют бэкдор, а лишь снижают точность его срабатывания.
Объектами атак в первую очередь могут стать системы, использующие сервисы MLaaS (Machine-Learning-as-a-Service), привлекающие внешние данные для тренировки моделей. Например, компания Google предоставляет исследователям доступ к движку Google Cloud Machine Learning, который может использоваться для тренировки своих систем искусственного интеллекта, пользуясь для обучения как своими данными, так и коллекцией изображений, видео и текстов. Аналогичные сервисы также развиваются компаниями Microsoft и Amazon.
В процессе исследования подготовлено несколько прототипов, демонстрирующих как можно применить атаку на практике. Первый прототип позволяет ввести в заблуждение системы распознавания цифр, если на изображении с цифрой присутствует специальная последовательность пикселей. Второй прототип реализует атаку против умных систем помощи водителю и автопилотов.
Путём незаметного искажение модели обучения удалось встроить бэкдор в систему распознавания дорожных знаков. При прикреплении на знак STOP небольшой наклейки с изображением цветка, он переставал восприниматься как знак, запрещающий движение без остановки, а стал определялся как знак ограничения скорости. При этом без наклейки система определяла знак корректно. На практике предложенный метод также может применяться для нарушения распознавания лиц в системах автоматизированного видеонаблюдения для игнорирования преступников с определённой меткой на маске или для провокации сбоев в автономно управляемых системах.
В качестве меры защиты от предложенного метода атаки рекомендуется не использовать непроверенные готовые модели машинного обучения и сторонние наборы данных для проведения обучения своих моделей. Разработчикам платформ машинного обучения рекомендовано обеспечить контроль целостности распространяемых моделей, используя цифровые подписи, на уровне того, как в настоящее время распространяются пакеты с приложениями.
Источники
править
Любой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.