Учёные нашли способ сохранять квантовую когерентность бесконечно долго
26 декабря 2016 года
Международная группа учёных экспериментально продемонстрировала квантовую систему, которая может сохранять свою когерентность, то есть свойство находиться одновременно в двух и более состояниях, сколь угодно долго даже при комнатных температурах. Это должно упростить создание квантовых компьютеров. Статья с результатами исследования опубликована в журнале Physical Review Letters.
Квантовая когерентность является отличительным свойством квантовых объектов и заключается в том, что такие объекты могут в некотором смысле находиться сразу в нескольких состояниях. Это свойство лежит в основе работы квантовых компьютеров и определяет их превосходство над компьютерами обычными. Если в обычных компьютерах каждый бит обрабатываемой информации может находиться или в состоянии 0, или в состоянии 1, то в квантовых компьютерах квантовые биты — кубиты — находятся сразу и в состоянии 0, и в состоянии 1. Таким образом, там где в обычном компьютере требуется два вычисления, чтобы сначала посмотреть результат с 0, а затем результат с 1, в квантовом компьютере можно провести одно вычисление сразу с обоими значениями.
К сожалению, из-за взаимодействия с окружающей средой квантовая когерентность быстро нарушается. Этот процесс, носящий название декогеренции, существенно усложняет создание квантовых компьютеров. Существующие методы борьбы с декогеренцией обладают теми или иными недостатками, поэтому в обсуждаемой работе был применён принципиально новый метод, разработанный этой же группой ранее.
Метод заключается в том, что если имеется система квантовых объектов, например, несколько кубитов, объединённых между собой, то её можно организовать таким образом, что декогеренция будет действовать только на некоторые из параметров системы, но другие — говорят, что они перпендикулярны первым — будут сохранять свою когерентность неограниченно долго. Именно они и могут быть использованы для квантовых вычислений.
В ходе эксперимента учёным удалось продемонстрировать сохранение квантовой когерентности систем из двух кубитов в течение сотен миллисекунд при комнатной температуре.
Аналогичный механизм может работать в фотосинтезирующих молекулах, которые также находятся в тесном контакте с окружающей средой, но при этом, по всей видимости, используют квантовые процессы для преобразования энергии падающего на них света в биохимическую энергию. Эта гипотеза, однако, требует дальнейших исследований.
Источники
править- Артём Коржиманов «Учёные научились сохранять квантовую когерентность бесконечно долго». physħ, 25 декабря 2016 года. (архив)
- Lisa Zyga «Forever quantum: physicists demonstrate everlasting quantum coherence». phys.org, 14 октября 2016 года. (архив)
- Isabela A. Silva et al. «Observation of Time-Invariant Coherence in a Nuclear Magnetic Resonance Quantum Simulator». Physical Review Letters, 14 октября 2016 года. (архив)
- Isabela A. Silva et al. «Observation of time-invariant coherence in a room temperature quantum simulator». arxiv.org, 6 ноября 2015 года. (архив)
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.