Baidu открыл наработки в области машинного обучения
5 сентября 2016 года
Китайская компания Baidu, развивающая одноимённую поисковую систему, объявила об открытии исходных текстов своих наработок в области глубинного машинного обучения. В настоящее время опубликован предварительный выпуск ПО PaddlePaddle (PArallel Distributed Deep LEarning), финальная версия которого ожидается 30 сентября. Код открыт под лицензией Apache 2.0.
В качестве преимущества PaddlePaddle перед ранее открытыми разработами компаний Google, Microsoft, Facebook и Amazon, называется существенное упрощение использования системы и гибкость в адаптации для решаемых задач. PaddlePaddle позиционируется как универсальная система машинного обучения, подходящая для различных сценариев применения. По заявлению разработчиков, для создания программы перевода при использовании PaddlePaddle потребовалось написать в четыре раза меньше кода, чем при использовании доступных аналогов.
В настоящее время PaddlePaddle уже применяется в более 30 различных продуктов и сервисов Baidu, охватывая области от поиска, до финансов и здравоохранения. Опубликованные демонстрационные примеры (Архивная копия от 15 февраля 2017 на Wayback Machine) охватывают такие области как классификация изображений, анализ тональности текста, выработка рекомендаций и генерация текста.
Основные особенности PaddlePaddle:
- PaddlePaddle поддерживает широкий спектр архитектур нейронных сетей и алгоритмов оптимизации. При помощи PaddlePaddle можно достаточно просто сконфигурировать сложные модели, такие как нейронные сети для машинного перевода;
- Эффективность. Возможность задействовать все ресурсы гетерогенных систем с оптмизиацией на различных уровнях, включая память, архитектуру и коммуникации. Например, математические операции оптимизируются при помощи инструкций SSE/AVX, библиотек BLAS (MKL, ATLAS, cuBLAS) и адаптированных вычислительных ядер для CPU/GPU. Другим примером может быть создание выскооптимизированых рекурентных сетей, которые могут работать с последовательностями произвольной длины без промежуточного заполнения (padding). Поддерживаются оптимизированные локальные и распределённые методы обучения для моделей с разреженными данными в пространстве высокой размерности;
- Масштабируемость. Возможность построения распределённых систем обучения, в которых тренировка моделей может быть разнесена на несколько узлов кластера с привлечением многих CPU и GPU, и задействованием высокоскоростных коммуникаций для увеличения производительности параллельной обработки данных;
- Простота развёртывания новых решений. В Baidu система применяется для решения таких задач, как предсказание интенсивности кликов, классификация больших коллекций изображений, распознавание символов (OCR), ранжирование при поиске, определение компьютерных вирусов, вывод рекомендованного контента и т.п. API доступен для языков Python и С++.
Источники
править
Любой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.