NVIDIA открыла код системы машинного обучения, синтезирующей пейзажи по наброскам
13 апреля 2019 года
Компания NVIDIA опубликовала исходные тексты системы машинного обучения SPADE (GauGAN), позволяющей синтезировать реалистичные пейзажи на основе грубых набросков, а также связанные с проектом натренированные модели. Система была продемонстрирована в марте на конференции GTC 2019, но код был опубликован только вчера. Наработки открыты под несвободной лицензией CC BY-NC-SA 4.0 (Creative Commons Attribution-NonCommercial-ShareAlike 4.0), допускающей использование только в некоммерческих целях. Код написан на языке Python с применением фреймворка PyTorch.
Наброски оформляются в виде сегментированной карты, определяющей размещение примерных объектов на сцене. Характер генерируемых объектов задаётся при помощи цветовых меток. Например, голубая заливка преобразуется в небо, синяя в воду, тёмно-зелёная в деревья, светло-зелёная в траву, светло-коричневая в камни, тёмно-коричневая в горы, серая в снег, коричневая линия преобразуется в дорогу, а синяя линия в реку. Дополнительно на основе выбора эталонных изображений определяется общий стиль композиции и время суток. Предлагаемый инструмент для создания виртуальных миров может оказаться полезным широкому кругу специалистов, от архитекторов и планировщиков городской среды до разработчиков игр и ландшафтных дизайнеров.
Объекты синтезируются генеративно-состязательной нейронной сетью ( GAN), которая на основе схематичной сегментированной карты создаёт реалистичные изображения, заимствуя детали из модели, предварительно обученной на нескольких миллионах фотоснимков. В отличие от ранее развиваемых систем синтеза изображений предложенный метод основан на применении адаптивного пространственного преобразования с последующей трансформацией на основе машинного обучения. Обработка сегментированной карты вместо семантической разметки позволяет добиться точного соответствия результата и контролировать стиль.
Для достижения реалистичности применяются две конкурирующие друг с другом нейронных сети: генератор и дискриминатор (Discriminator). Генератор формирует изображения на основе смешивания элементов реальных фотографий, а дискриминатор выявляет возможные отклонения от реальных изображений. В итоге формируется обратная связь, на основе которой генератор начинает компоновать всё более качественные образцы, до тех пор пока дискриминатор не перестанет отличать их от настоящих.
Источники
править
Любой участник может оформить статью: добавить иллюстрации, викифицировать, заполнить шаблоны и добавить категории.
Любой редактор может снять этот шаблон после оформления и проверки.
Комментарии
Если вы хотите сообщить о проблеме в статье (например, фактическая ошибка и т. д.), пожалуйста, используйте обычную страницу обсуждения.
Комментарии на этой странице могут не соответствовать политике нейтральной точки зрения, однако, пожалуйста, придерживайтесь темы и попытайтесь избежать брани, оскорбительных или подстрекательных комментариев. Попробуйте написать такие комментарии, которые заставят задуматься, будут проницательными или спорными. Цивилизованная дискуссия и вежливый спор делают страницу комментариев дружелюбным местом. Пожалуйста, подумайте об этом.
Несколько советов по оформлению реплик:
- Новые темы начинайте, пожалуйста, снизу.
- Используйте символ звёздочки «*» в начале строки для начала новой темы. Далее пишите свой текст.
- Для ответа в начале строки укажите на одну звёздочку больше, чем в предыдущей реплике.
- Пожалуйста, подписывайте все свои сообщения, используя четыре тильды (~~~~). При предварительном просмотре и сохранении они будут автоматически заменены на ваше имя и дату.
Обращаем ваше внимание, что комментарии не предназначены для размещения ссылок на внешние ресурсы не по теме статьи, которые могут быть удалены или скрыты любым участником. Тем не менее, на странице комментариев вы можете сообщить о статьях в СМИ, которые ссылаются на эту заметку, а также о её обсуждении на сторонних ресурсах.